I tried to write formulas (part 4).

<Wave Equation>

 Wave equation in 3 dimensions is described as below.  

\begin{eqnarray}\frac{\partial^2u}{\partial t^2} &=& v^2\left(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}\right)\end{eqnarray}

Here, we assume as follows: \begin{eqnarray}u(x,y,z,t)=f(x)g(y)h(z)I(t)\end{eqnarray}

Then, the equation can be deformed as below.

\begin{eqnarray}f(x)g(y)h(z)\frac{\partial^2I(t)}{\partial t^2} &=& v^2\left(g(y)h(z)I(t)\frac{\partial^2f(x)}{\partial x^2}+f(x)h(z)I(t)\frac{\partial^2g(y)}{\partial y^2}\\+f(x)g(y)I(t)\frac{\partial^2h(z)}{\partial z^2}\right)\notag\\\notag\\\frac{1}{I(t)}\frac{\partial^2I(t)}{\partial t^2} &=& v^2\left(\frac{1}{f(x)}\frac{\partial^2f(x)}{\partial x^2}+\frac{1}{g(y)}\frac{\partial^2g(y)}{\partial y^2}+\frac{1}{h(z)}\frac{\partial^2h(z)}{\partial z^2}\right) \end{eqnarray}

Here, left hand side is a function of  \it t, and the right hand side is a function of  \it x, y, z. Therefore, the both sides must be equal to constant function  \it C ( \it C is nonzero because  \it v is nozero).Moreover, when  \it C is replaced by  -\omega^2, the equation can be deformed as below.

\begin{eqnarray}\frac{1}{I(t)}\frac{\partial^2I(t)}{\partial t^2} &=& -\omega^2 \\v^2\left(\frac{1}{f(x)}\frac{\partial^2f(x)}{\partial x^2}+\frac{1}{g(y)}\frac{\partial^2g(y)}{\partial y^2}+\frac{1}{h(z)}\frac{\partial^2h(z)}{\partial z^2}\right) &=& -\omega^2 \end{eqnarray}

Also, wave number  \it k is expressed by  \it v and  \omega.

\begin{eqnarray}\frac{\omega}{v}&=&\frac{2\pi f}{f\lambda}=\frac{2\pi}{\lambda}{\equiv}\space k\\k^2 &=&k^2_{x}+k^2_{y}+k^2_{z}\end{eqnarray}

So, the equation can be deformed into 4 equations as below. \begin{eqnarray}\frac{1}{I(t)}\frac{\partial^2I(t)}{\partial t^2} &=& -\omega^2 \\\frac{1}{f(x)}\frac{\partial^2f(x)}{\partial x^2}&=& -k^2_x \\\frac{1}{g(y)}\frac{\partial^2g(y)}{\partial y^2}&=& -k^2_y \\\frac{1}{h(z)}\frac{\partial^2h(z)}{\partial z^2} &=& -k^2_z \end{eqnarray}

Then, each equation can be solved as follows.

\begin{eqnarray}f(x)&=&A_1e^{-ik_xx}+A_2e^{ik_xx}\\g(y)&=&A_3e^{-ik_yy}+A_4e^{ik_yy}\\h(z)&=&A_5e^{-ik_zz}+A_6e^{ik_zz}\\I(t)&=&A_7e^{-i\omega t}+A_8e^{i\omega t}\end{eqnarray}

For the sake of simplicity, the solutions are expressed as below. \begin{eqnarray}f(x)&=&A_2e^{ik_xx}\\g(y)&=&A_4e^{ik_yy}\\h(z)&=&A_6e^{ik_zz}\\I(t)&=&A_7e^{-i\omega t}\end{eqnarray}

Therefore the wave equation can be solved as below. \begin{eqnarray}u(x,y,z,t)&=&f(x)g(y)h(z)I(t)\\&=&A_2e^{ik_xx}A_4e^{ik_yy}A_6e^{ik_zz}A_7e^{-i\omega t}\\&=&A_2A_4A_6A_7e^{ik_xx}e^{ik_yy}e^{ik_zz}e^{-i\omega t}\\&=&Ae^{i(k_xx+k_yy+k_zz-\omega t)}\space(\because A=A_2A_4A_6A_7) \end{eqnarray}

The solution can be expressed as follows, when we use the wave number vector  \boldsymbol k and the position vector  \boldsymbol r.

\begin{eqnarray}u({\boldsymbol r}, t)=Ae^{i( {\boldsymbol k}{\cdot}{\boldsymbol r}-\omega t)}\end{eqnarray}

 

 

 

波動方程式

 3次元における波動方程式は次のように記述される。

\begin{eqnarray}\frac{\partial^2u}{\partial t^2} &=& v^2\left(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}\right)\end{eqnarray}

ここで、次のように仮定する。\begin{eqnarray}u(x,y,z,t)=f(x)g(y)h(z)I(t)\end{eqnarray}

すると、方程式は次のように変形できる。

\begin{eqnarray}f(x)g(y)h(z)\frac{\partial^2I(t)}{\partial t^2} &=& v^2\left(g(y)h(z)I(t)\frac{\partial^2f(x)}{\partial x^2}+f(x)h(z)I(t)\frac{\partial^2g(y)}{\partial y^2}\\+f(x)g(y)I(t)\frac{\partial^2h(z)}{\partial z^2}\right)\notag\\\notag\\\frac{1}{I(t)}\frac{\partial^2I(t)}{\partial t^2} &=& v^2\left(\frac{1}{f(x)}\frac{\partial^2f(x)}{\partial x^2}+\frac{1}{g(y)}\frac{\partial^2g(y)}{\partial y^2}+\frac{1}{h(z)}\frac{\partial^2h(z)}{\partial z^2}\right) \end{eqnarray}

ここで、左辺は時刻 \it tの関数であり、右辺は位置 \it x, y, zの関数である。それゆえ両辺は定数関数 \it Cに等しくなければならない (  \it vは0でないので、 \it Cは0でない)。さらに \it C -\omega^2で置き換えれば、方程式は次のように変形できる。

\begin{eqnarray}\frac{1}{I(t)}\frac{\partial^2I(t)}{\partial t^2} &=& -\omega^2 \\v^2\left(\frac{1}{f(x)}\frac{\partial^2f(x)}{\partial x^2}+\frac{1}{g(y)}\frac{\partial^2g(y)}{\partial y^2}+\frac{1}{h(z)}\frac{\partial^2h(z)}{\partial z^2}\right) &=& -\omega^2 \end{eqnarray}

さらに波数 \it k \it v \omegaを用いて次のように表される。

\begin{eqnarray}\frac{\omega}{v}&=&\frac{2\pi f}{f\lambda}=\frac{2\pi}{\lambda}{\equiv}\space k\\k^2 &=&k^2_{x}+k^2_{y}+k^2_{z}\end{eqnarray}

ゆえに、方程式は次のように4つの方程式へ変形できる。\begin{eqnarray}\frac{1}{I(t)}\frac{\partial^2I(t)}{\partial t^2} &=& -\omega^2 \\\frac{1}{f(x)}\frac{\partial^2f(x)}{\partial x^2}&=& -k^2_x \\\frac{1}{g(y)}\frac{\partial^2g(y)}{\partial y^2}&=& -k^2_y \\\frac{1}{h(z)}\frac{\partial^2h(z)}{\partial z^2} &=& -k^2_z \end{eqnarray}

それぞれの方程式は、次のように解かれる。

\begin{eqnarray}f(x)&=&A_1e^{-ik_xx}+A_2e^{ik_xx}\\g(y)&=&A_3e^{-ik_yy}+A_4e^{ik_yy}\\h(z)&=&A_5e^{-ik_zz}+A_6e^{ik_zz}\\I(t)&=&A_7e^{-i\omega t}+A_8e^{i\omega t}\end{eqnarray}

簡単のために、解を次のように表す。\begin{eqnarray}f(x)&=&A_2e^{ik_xx}\\g(y)&=&A_4e^{ik_yy}\\h(z)&=&A_6e^{ik_zz}\\I(t)&=&A_7e^{-i\omega t}\end{eqnarray}

よって、波動方程式は次のように解くことができる。\begin{eqnarray}u(x,y,z,t)&=&f(x)g(y)h(z)I(t)\\&=&A_2e^{ik_xx}A_4e^{ik_yy}A_6e^{ik_zz}A_7e^{-i\omega t}\\&=&A_2A_4A_6A_7e^{ik_xx}e^{ik_yy}e^{ik_zz}e^{-i\omega t}\\&=&Ae^{i(k_xx+k_yy+k_zz-\omega t)}\space(\because A=A_2A_4A_6A_7) \end{eqnarray}

波動方程式の解は波数ベクトル \boldsymbol kと位置ベクトル \boldsymbol rを用いれば、次のように表現することができる。

\begin{eqnarray}u({\boldsymbol r}, t)=Ae^{i( {\boldsymbol k}{\cdot}{\boldsymbol r}-\omega t)}\end{eqnarray}