I tried to write formulas (part 1).

<Newton's Equation of Motion>

 Newton's Equation of Motion is described as below

\[m\frac{d^2{\boldsymbol r}}{dt^2} = {\boldsymbol F} \]

Here, {\displaystyle{\boldsymbol r}} is the position vector of point mass whose mass is m, and {\displaystyle{\boldsymbol r}} is the force vector acting on the point mass. In general, {\displaystyle{\boldsymbol r}} and {\displaystyle{\boldsymbol F}} are defined as stated below respectively.

\[{\boldsymbol r}{\equiv}{}^t\!(r_1, r_2, \cdots, r_n) = \left( \begin{array}{c} r_1 \\ r_2 \\ \vdots \\ r_n \end{array} \right)\]

\[{\boldsymbol F}{\equiv}{}^t\!(F_1, F_2, \cdots, F_n) = \left( \begin{array}{c} F_1 \\ F_2 \\ \vdots \\ F_n \end{array} \right)\]

In 3-dimensional space, they can be expressed as stated below respectively.

\[{\boldsymbol r}{\equiv}{}^t\!(x,y,z)= \left( \begin{array}{c} x \\ y \\ z \end{array} \right)\]

\[{\boldsymbol F}{\equiv}{}^t\!(F_x,F_y,F_z)= \left( \begin{array}{c} F_x \\ F_y \\ F_z \end{array} \right)\]

When x-component is extracted from Newton's equation, one-dimensional one can be obtained as below.(For the sake of simplicity, the subscript is removed from {F_x}.)

\[m\frac{d^2x}{dt^2} = F \]

 

 

 

ニュートン運動方程式

ニュートン運動方程式は下記のように記述されます。

\[m\frac{d^2{\boldsymbol r}}{dt^2} = {\boldsymbol F} \]

ここで、{\displaystyle{\boldsymbol r}} は質量mの質点の位置ベクトル位置ベクトルであり、 {\displaystyle{\boldsymbol r}} はその質点にかかる力のベクトルです。一般的に{\displaystyle{\boldsymbol r}}{\displaystyle{\boldsymbol F}} はそれぞれ下記のように定義されます。

\[{\boldsymbol r}{\equiv}{}^t\!(r_1, r_2, \cdots, r_n) = \left( \begin{array}{c} r_1 \\ r_2 \\ \vdots \\ r_n \end{array} \right)\]

\[{\boldsymbol F}{\equiv}{}^t\!(F_1, F_2, \cdots, F_n) = \left( \begin{array}{c} F_1 \\ F_2 \\ \vdots \\ F_n \end{array} \right)\]

3次元空間においては、それら2つのベクトルはそれぞれ下記のように表すことができます。

\[{\boldsymbol r}{\equiv}{}^t\!(x,y,z)= \left( \begin{array}{c} x \\ y \\ z \end{array} \right)\]

\[{\boldsymbol F}{\equiv}{}^t\!(F_x,F_y,F_z)= \left( \begin{array}{c} F_x \\ F_y \\ F_z \end{array} \right)\]

ニュートン運動方程式からx成分だけを抽出すれば、以下のような一次元における方程式が得られます(簡単のために{F_x}の下付き文字を外しています)。

\[m\frac{d^2x}{dt^2} = F \]